CS 6815: Lecture 10

Instructor: Eshan Chattopadhyay
Scribe: Lucy Li

September 27, 2018

1 Expander Graphs

More information on expander graphs can be found in Chapter 4 of Salil Vadhan's book [1], and in a survey by Hoory, Linial, and Widgerson [2].

Informally, expander graphs are sparse graphs that are "really well connected."
More formally, an expander graph is a graph $G=(V, E)$, with $|V|=n$, that is:

1. a multigraph.
2. undirected, but each edge counts as 2 edges. $\{u, v\}=(u, v),(v, u)$
3. d-regular.

In addition to the above properties, the graph should be "really well connected." What does it mean to be "really well connected"? Here are some equivalent ideas.

1. $N(S)=\{v \in V: \exists u \in S,(u, v) \in E\}$, and $N(S)$ is large
2. Let $E(S, T)$ be the edges between sets of vertices S and T, and let \bar{S} be $V \backslash S . E(S, \bar{S})$ is large.

But what does "large" mean? We will explore the definitions more in the next sections.

2 Edge Expansion

For $S \subseteq V$, let $\partial S=E(S, \bar{S})$, which is the number of edges leaving set S.
Definition 2.1. The expansion ratio is:

$$
\begin{equation*}
h(G)=\min _{S \subseteq V:|S| \leq \frac{n}{2}} \frac{|\partial S|}{|S|} \tag{1}
\end{equation*}
$$

Definition 2.2. G is an α edge expander if $h(G) \geq \alpha$.

3 Vertex Expanders

Definition 3.1. G is a (K, A) vertex expander if $\forall S \subseteq V,|N(S)| \geq A|S|$, where $|S| \leq K$.
Theorem 3.2. For $d \geq 3, \exists$ a constant $\alpha>0$ such that a random d-regular graph is a ($\alpha n, d-\frac{11}{10}$) vertex expander (with high probability).

Some constructions of vertex expanders:

1. Lubotzky-Phillips-Sarnak [3]
$V=\mathbb{Z}_{p}$, where p is a prime.
$x \in V$ is connected to: $x+1, x-1, x^{-1}$. (3-regular graph)
This construction, while simple, is not ideal because we don't know how to deterministically generate large primes
2. Margulis [4]

$$
V=\mathbb{Z}_{m} \times \mathbb{Z}_{m}, m \in \mathbb{Z}^{+}
$$

Vertex (x, y) is connected to $(x+y, y),(x-y, y),(x, y+x),(x, y-x),(x+y+1, y),(x, y+$ $x+1),(x, y-x+1)($ all $\bmod m)$

4 Spectral Expansion

Notation: A is the adjacency matrix for graph $G . \hat{A}=\frac{1}{d} A$ is the normalized adjacency matrix.
A is a symmetric real matrix. $A v=\lambda v, v \in \mathbb{R}^{n}$, where λ is an eigenvalue and v is the corresponding eigenvector.

Fact: Given that $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ are eigenvalues of A, with corresponding eigenvectors $\left\{v_{1}, \ldots, v_{n}\right\}$:

1. The λ_{i} 's are real.
2. The v_{i} 's form an orthonormal basis.

Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ be the sorted eigenvalues. Then

1. $\lambda_{1}=d, v_{1}=\frac{1}{\sqrt{n}} \overrightarrow{\mathbf{1}}$, where $\overrightarrow{\mathbf{1}}$ is the vector of all 1 s .
2. $\lambda_{1}=\lambda_{2}$ iff G is not connected.
3. Let $\lambda=\max \left\{\left|\lambda_{2}\right|,\left|\lambda_{n}\right|\right\}$.
4. If $\lambda_{n}=-\lambda_{1}$, then G is a bipartite graph.

Definition 4.1. G is a (n, d, t) spectral expander if $\lambda_{G} \leq t$, where λ_{G} is the λ value for graph G. The spectral gap is defined to be $d-t$.

Claim 4.2 (Alon-Boppana). $\lambda \geq 2 \sqrt{d-1}-o_{n}(1)$.
Claim 4.3. (weaker claim) $\lambda \geq \sqrt{d}\left(1-o_{n}(1)\right)$.
Proof.

$$
\begin{aligned}
n d & \leq \operatorname{tr}\left(A^{2}\right) \\
& =\sum_{i} \lambda_{i}^{2} \\
& =d^{2}+\sum_{i=2}^{n} \lambda_{i}^{2} \\
& \leq d^{2}+\lambda^{2}(n-1) \\
\lambda & \geq \sqrt{\frac{d(n-d)}{n-1}}
\end{aligned}
$$

Lemma 4.4 (Expander Mixing Lemma). Let G be a (n, d, λ) spectral expander. Then, $\forall S, T \subseteq V$, $\left|E(S, T)-\frac{d|S||T|}{n}\right| \leq \lambda \sqrt{|S||T|}$.

Proof. Let $I_{S}, I_{T} \in \mathbb{R}^{n}$, where I_{S}, I_{T} are the indicator vectors for S, T respectively. We know that $I_{S}=\sum \alpha_{i} \overrightarrow{\mathbf{v}}_{i}, I_{T}=\sum \beta_{i} \overrightarrow{\mathbf{v}}_{i}$, where $\overrightarrow{\mathbf{v}}_{i}$ are the eigenvectors of A. Note that $\overrightarrow{\mathbf{v}}_{1}=\frac{1}{\sqrt{n}} \overrightarrow{\mathbf{1}}$ and $\left\langle I_{S}, \overrightarrow{\mathbf{v}}\right\rangle=\alpha_{1}=\frac{|S|}{\sqrt{n}}$.

$$
\begin{aligned}
|E(S, T)| & =I_{S}^{T} A I_{T} \\
& =\sum_{i=1}^{n} \alpha_{i} \beta_{i} \lambda_{i} \\
& =\frac{d|S||T|}{n}+\sum_{i=2}^{n} \alpha_{i} \beta_{i} \lambda_{i} .
\end{aligned}
$$

This means that

$$
\begin{aligned}
\Longrightarrow\left|E(S, T)-\frac{d|S||T|}{n}\right| & \leq \lambda \sum_{i=2}^{n} \alpha_{i} \beta_{i} \\
& \leq \lambda\left(\sum \alpha_{i}^{2}\right)^{\frac{1}{2}}\left(\sum \beta_{i}^{2}\right)^{\frac{1}{2}} \\
& \leq \lambda|S|^{\frac{1}{2}}|T|^{\frac{1}{2}} .
\end{aligned}
$$

5 Spectral Expansion \Longrightarrow Vertex Expansion

Let G be a (n, d, α) spectral expander graph, with \hat{A} as its normalized adjacency matrix, and $\alpha=\frac{\lambda}{d}$.
Let $S \subseteq V$. We want to show that G is a vertex expander by proving that $N(S) \geq A|S|$.
Let P be the probability distribution uniform on $S . \quad P \in \mathbb{R}^{n} . \quad P(i)=\frac{1}{|S|}$ if $i \in S$, and 0 otherwise.

Definition 5.1. If $p \in \mathbb{R}^{n}$, the Renyi entropy of p is $H_{2}(p)=\log \left(\frac{1}{\|p\|_{2}^{2}}\right)$.
The Renyi entropy of P is $H_{2}(P)=\log (|S|)$.
Claim 5.2. $|\operatorname{Supp}(P)| \geq 2^{H_{2}(P)}$.
Proof.

$$
\begin{aligned}
1 & =\sum_{i \in \operatorname{Supp}(P)} P(i) \\
& \leq \sqrt{\operatorname{Supp}(P)}\left(\sum P(i)^{2}\right)^{\frac{1}{2}} \\
& =\sqrt{\operatorname{Supp}(P)\|P\|_{2}} \\
\Longrightarrow & \operatorname{Supp}(P) \geq \frac{1}{\|P\|_{2}^{2}}=2^{H_{2}(P)}
\end{aligned}
$$

References

[1] S. P. Vadhan et al., "Pseudorandomness," Foundations and Trends $®$ in Theoretical Computer Science, vol. 7, no. 1-3, pp. 1-336, 2012.
[2] S. Hoory, N. Linial, and A. Wigderson, "Expander graphs and their applications," BULL. AMER. MATH. SOC., vol. 43, no. 4, pp. 439-561, 2006.
[3] A. Lubotzky, R. Phillips, and P. Sarnak, "Ramanujan graphs," Combinatorica, vol. 8, no. 3, pp. 261-277, 1988.
[4] G. A. Margulis, "Explicit constructions of concentrators," Problemy Peredachi Informatsii, vol. 9, no. 4, pp. 71-80, 1973.

