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1 Expander Graphs

More information on expander graphs can be found in Chapter 4 of Salil Vadhan’s book [1], and
in a survey by Hoory, Linial, and Widgerson [2].

Informally, expander graphs are sparse graphs that are ”really well connected.”
More formally, an expander graph is a graph G = (V,E), with |V | = n, that is:

1. a multigraph.

2. undirected, but each edge counts as 2 edges. {u, v} = (u, v), (v, u)

3. d-regular.

In addition to the above properties, the graph should be ”really well connected.” What does it
mean to be ”really well connected”? Here are some equivalent ideas.

1. N(S) = {v ∈ V : ∃u ∈ S, (u, v) ∈ E}, and N(S) is large

2. Let E(S, T ) be the edges between sets of vertices S and T , and let S̄ be V \ S. E(S, S̄) is
large.

But what does ”large” mean? We will explore the definitions more in the next sections.

2 Edge Expansion

For S ⊆ V , let ∂S = E(S, S̄), which is the number of edges leaving set S.

Definition 2.1. The expansion ratio is:

h(G) = min
S⊆V : |S|≤n

2

|∂S|
|S|

(1)

Definition 2.2. G is an α edge expander if h(G) ≥ α.

3 Vertex Expanders

Definition 3.1. G is a (K,A) vertex expander if ∀S ⊆ V, |N(S)| ≥ A|S|, where |S| ≤ K.

Theorem 3.2. For d ≥ 3, ∃ a constant α > 0 such that a random d-regular graph is a (αn, d− 11
10)

vertex expander (with high probability).
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Some constructions of vertex expanders:

1. Lubotzky-Phillips-Sarnak [3]
V = Zp, where p is a prime.
x ∈ V is connected to: x+ 1, x− 1, x−1. (3-regular graph)
This construction, while simple, is not ideal because we don’t know how to deterministically
generate large primes

2. Margulis [4]
V = Zm × Zm,m ∈ Z+

Vertex (x, y) is connected to (x + y, y), (x − y, y), (x, y + x), (x, y − x), (x + y + 1, y), (x, y +
x+ 1), (x, y − x+ 1) (all mod m)

4 Spectral Expansion

Notation: A is the adjacency matrix for graph G. Â = 1
dA is the normalized adjacency matrix.

A is a symmetric real matrix. Av = λv, v ∈ Rn, where λ is an eigenvalue and v is the corre-
sponding eigenvector.

Fact: Given that {λ1, λ2, . . . , λn} are eigenvalues ofA, with corresponding eigenvectors {v1, . . . , vn}:

1. The λi’s are real.

2. The vi’s form an orthonormal basis.

Let λ1 ≥ λ2 ≥ · · · ≥ λn be the sorted eigenvalues. Then

1. λ1 = d, v1 = 1√
n

−→
1 , where

−→
1 is the vector of all 1s.

2. λ1 = λ2 iff G is not connected.

3. Let λ = max{|λ2|, |λn|}.

4. If λn = −λ1, then G is a bipartite graph.

Definition 4.1. G is a (n, d, t) spectral expander if λG ≤ t, where λG is the λ value for graph G.
The spectral gap is defined to be d− t.

Claim 4.2 (Alon-Boppana). λ ≥ 2
√
d− 1− on(1).

Claim 4.3. (weaker claim) λ ≥
√
d(1− on(1)).

Proof.

nd ≤ tr(A2)

=
∑
i

λ2i

= d2 +

n∑
i=2

λ2i

≤ d2 + λ2(n− 1)

λ ≥
√
d(n− d)

n− 1
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Lemma 4.4 (Expander Mixing Lemma). Let G be a (n, d, λ) spectral expander. Then, ∀S, T ⊆ V ,∣∣∣E(S, T )− d|S||T |
n

∣∣∣ ≤ λ√|S||T |.
Proof. Let IS , IT ∈ Rn, where IS , IT are the indicator vectors for S, T respectively. We know that
IS =

∑
αi
−→v i, IT =

∑
βi
−→v i, where −→v i are the eigenvectors of A. Note that −→v 1 = 1√

n

−→
1 and

〈IS ,−→v 〉 = α1 = |S|√
n

.

|E(S, T )| = ITSAIT

=
n∑
i=1

αiβiλi

=
d|S||T |
n

+
n∑
i=2

αiβiλi .

This means that

=⇒
∣∣∣∣E(S, T )− d|S||T |

n

∣∣∣∣ ≤ λ n∑
i=2

αiβi

≤ λ
(∑

α2
i

) 1
2
(∑

β2i

) 1
2

≤ λ|S|
1
2 |T |

1
2 .

5 Spectral Expansion =⇒ Vertex Expansion

Let G be a (n, d, α) spectral expander graph, with Â as its normalized adjacency matrix, and α = λ
d .

Let S ⊆ V . We want to show that G is a vertex expander by proving that N(S) ≥ A|S|.
Let P be the probability distribution uniform on S. P ∈ Rn. P (i) = 1

|S| if i ∈ S, and 0
otherwise.

Definition 5.1. If p ∈ Rn, the Renyi entropy of p is H2(p) = log
(

1
‖p‖22

)
.

The Renyi entropy of P is H2(P ) = log(|S|).

Claim 5.2. |Supp(P )| ≥ 2H2(P ).

Proof.

1 =
∑

i∈Supp(P )

P (i)

≤
√

Supp(P )
(∑

P (i)2
) 1

2

=
√

Supp(P )‖P‖2

=⇒ Supp(P ) ≥ 1

‖P‖22
= 2H2(P )
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