CS 6815: Lecture 10

Instructor: Eshan Chattopadhyay

Scribe: Lucy Li

September 27, 2018

1 Expander Graphs

More information on expander graphs can be found in Chapter 4 of Salil Vadhan's book [1], and in a survey by Hoory, Linial, and Widgerson [2].

Informally, expander graphs are sparse graphs that are "really well connected." More formally, an expander graph is a graph G = (V, E), with |V| = n, that is:

- 1. a multigraph.
- 2. undirected, but each edge counts as 2 edges. $\{u, v\} = (u, v), (v, u)$
- 3. *d*-regular.

In addition to the above properties, the graph should be "really well connected." What does it mean to be "really well connected"? Here are some equivalent ideas.

- 1. $N(S) = \{v \in V : \exists u \in S, (u, v) \in E\}$, and N(S) is large
- 2. Let E(S,T) be the edges between sets of vertices S and T, and let \overline{S} be $V \setminus S$. $E(S,\overline{S})$ is large.

But what does "large" mean? We will explore the definitions more in the next sections.

2 Edge Expansion

For $S \subseteq V$, let $\partial S = E(S, \overline{S})$, which is the number of edges leaving set S.

Definition 2.1. The expansion ratio is:

$$h(G) = \min_{S \subseteq V \colon |S| \le \frac{n}{2}} \frac{|\partial S|}{|S|} \tag{1}$$

Definition 2.2. *G* is an α edge expander if $h(G) \ge \alpha$.

3 Vertex Expanders

Definition 3.1. G is a (K, A) vertex expander if $\forall S \subseteq V, |N(S)| \ge A|S|$, where $|S| \le K$.

Theorem 3.2. For $d \ge 3$, \exists a constant $\alpha > 0$ such that a random d-regular graph is a $(\alpha n, d - \frac{11}{10})$ vertex expander (with high probability).

Some constructions of vertex expanders:

1. Lubotzky-Phillips-Sarnak [3]

 $V = \mathbb{Z}_p$, where p is a prime.

 $x \in V$ is connected to: $x + 1, x - 1, x^{-1}$. (3-regular graph)

This construction, while simple, is not ideal because we don't know how to deterministically generate large primes

2. Margulis [4] $V = \mathbb{Z}_m \times \mathbb{Z}_m, m \in \mathbb{Z}^+$ Vertex (x, y) is connected to (x + y, y), (x - y, y), (x, y + x), (x, y - x), (x + y + 1, y), (x, y + x + 1), (x, y - x + 1) (all mod m)

4 Spectral Expansion

Notation: A is the adjacency matrix for graph G. $\hat{A} = \frac{1}{d}A$ is the normalized adjacency matrix.

A is a symmetric real matrix. $Av = \lambda v, v \in \mathbb{R}^n$, where λ is an eigenvalue and v is the corresponding eigenvector.

Fact: Given that $\{\lambda_1, \lambda_2, \ldots, \lambda_n\}$ are eigenvalues of A, with corresponding eigenvectors $\{v_1, \ldots, v_n\}$:

- 1. The λ_i 's are real.
- 2. The v_i 's form an orthonormal basis.
- Let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ be the sorted eigenvalues. Then
- 1. $\lambda_1 = d, v_1 = \frac{1}{\sqrt{n}} \overrightarrow{\mathbf{1}}$, where $\overrightarrow{\mathbf{1}}$ is the vector of all 1s.
- 2. $\lambda_1 = \lambda_2$ iff G is not connected.
- 3. Let $\lambda = \max\{|\lambda_2|, |\lambda_n|\}.$
- 4. If $\lambda_n = -\lambda_1$, then G is a bipartite graph.

Definition 4.1. *G* is a (n, d, t) spectral expander if $\lambda_G \leq t$, where λ_G is the λ value for graph *G*. The spectral gap is defined to be d - t.

Claim 4.2 (Alon-Boppana). $\lambda \geq 2\sqrt{d-1} - o_n(1)$.

Claim 4.3. (weaker claim) $\lambda \geq \sqrt{d}(1 - o_n(1))$.

Proof.

$$nd \leq tr(A^2)$$

= $\sum_i \lambda_i^2$
= $d^2 + \sum_{i=2}^n \lambda_i^2$
 $\leq d^2 + \lambda^2(n-1)$
 $\lambda \geq \sqrt{\frac{d(n-d)}{n-1}}$

Lemma 4.4 (Expander Mixing Lemma). Let G be a (n, d, λ) spectral expander. Then, $\forall S, T \subseteq V$, $\left| E(S,T) - \frac{d|S||T|}{n} \right| \leq \lambda \sqrt{|S||T|}$.

Proof. Let $I_S, I_T \in \mathbb{R}^n$, where I_S, I_T are the indicator vectors for S, T respectively. We know that $I_S = \sum \alpha_i \vec{\mathbf{v}}_i, I_T = \sum \beta_i \vec{\mathbf{v}}_i$, where $\vec{\mathbf{v}}_i$ are the eigenvectors of A. Note that $\vec{\mathbf{v}}_1 = \frac{1}{\sqrt{n}} \vec{\mathbf{1}}$ and $\langle I_S, \vec{\mathbf{v}} \rangle = \alpha_1 = \frac{|S|}{\sqrt{n}}$.

$$|E(S,T)| = I_S^T A I_T$$

= $\sum_{i=1}^n \alpha_i \beta_i \lambda_i$
= $\frac{d|S||T|}{n} + \sum_{i=2}^n \alpha_i \beta_i \lambda_i$.

This means that

$$\implies \left| E(S,T) - \frac{d|S||T|}{n} \right| \le \lambda \sum_{i=2}^{n} \alpha_i \beta_i$$
$$\le \lambda \left(\sum \alpha_i^2 \right)^{\frac{1}{2}} \left(\sum \beta_i^2 \right)^{\frac{1}{2}}$$
$$\le \lambda |S|^{\frac{1}{2}} |T|^{\frac{1}{2}}.$$

5 Spectral Expansion \implies Vertex Expansion

Let G be a (n, d, α) spectral expander graph, with \hat{A} as its normalized adjacency matrix, and $\alpha = \frac{\lambda}{d}$.

Let $S \subseteq V$. We want to show that G is a vertex expander by proving that $N(S) \ge A|S|$.

Let P be the probability distribution uniform on S. $P \in \mathbb{R}^n$. $P(i) = \frac{1}{|S|}$ if $i \in S$, and 0 otherwise.

Definition 5.1. If $p \in \mathbb{R}^n$, the Renyi entropy of p is $H_2(p) = \log\left(\frac{1}{\|p\|_2^2}\right)$.

The Renyi entropy of P is $H_2(P) = \log(|S|)$.

Claim 5.2. $|Supp(P)| \ge 2^{H_2(P)}$.

Proof.

$$1 = \sum_{i \in \text{Supp}(P)} P(i)$$

$$\leq \sqrt{\text{Supp}(P)} \left(\sum P(i)^2\right)^{\frac{1}{2}}$$

$$= \sqrt{\text{Supp}(P)} \|P\|_2$$

$$\implies \text{Supp}(P) \geq \frac{1}{\|P\|_2^2} = 2^{H_2(P)}$$

References

- S. P. Vadhan et al., "Pseudorandomness," Foundations and Trends® in Theoretical Computer Science, vol. 7, no. 1–3, pp. 1–336, 2012.
- [2] S. Hoory, N. Linial, and A. Wigderson, "Expander graphs and their applications," BULL. AMER. MATH. SOC., vol. 43, no. 4, pp. 439–561, 2006.
- [3] A. Lubotzky, R. Phillips, and P. Sarnak, "Ramanujan graphs," Combinatorica, vol. 8, no. 3, pp. 261–277, 1988.
- [4] G. A. Margulis, "Explicit constructions of concentrators," Problemy Peredachi Informatsii, vol. 9, no. 4, pp. 71–80, 1973.